Analysis of FGM Cantilever Beams under Bending-torsional Behavior Using a Refined 1D Beam Theory

Author:

Guendouz Ilies,Khebizi Mourad,Guenfoud Hamza,Guenfoud Mohamed

Abstract

The static bending-torsion problem of functionally graded cantilever beams is studied using a refined 1D/3D beam theory (Refined beam theory RBT and Refined beam theory with distortion modes RBT*) built on the 3D Saint-Venant (SV) solution. In these theories, the displacement models include Poisson's effects, out-of-plane deformations and distortions. For a given section, the sectional displacement modes are derived from the computation of the particular 3D Saint-Venant’s solution. These modes, which reflect the mechanical behavior of the cross-section, lead to a beam theory that actually corresponds to the cross-section type in terms of shape and material. In addition, the models take into account edge effects to predict a 3D solution in a larger internal region to better describe the overall behavior of FGM beams. The models examined are implemented on the CSB (Cross-Section and Beam Analysis) tool. It is based on the RBT/SV (Refined Beam Theory based on the 3D SV’s solution) theory of FGM beams. The mechanical and physical characteristics of the FGM beams vary continuously, according to a power-law distribution, through the thickness of the beams. The numerical and 3D results obtained with homogeneous and FGM beams are systematically compared with other models in the literature and those provided by the full Saint-Venant beam theory (SVBT) calculations.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3