Mechanical Response of Thin Composite Beams Made of Functionally Graded Material Using Finite Element Method
-
Published:2023-05-31
Issue:
Volume:
Page:
-
ISSN:1587-3773
-
Container-title:Periodica Polytechnica Civil Engineering
-
language:
-
Short-container-title:Period. Polytech. Civil Eng.
Author:
Boumezbeur Khaled,Khebizi Mourad,Guenfoud Mohamed,Guendouz Ilies
Abstract
Functionally Graded Material (FGM) is a new generation of composite materials, it can be used for different engineering fields according to the loading environment, but the study of its mechanical behavior requires sophisticated numerical and analytical models. Several investigations in these models are available in the literature, however, most of those investigations are based on simplifying assumptions. In this paper, we present a three-dimensional finite element modeling of functionally graded material (FGM) beams subjected to static loading. Material properties are assumed to vary continuously along the beam thickness according to the power-law distribution with linear elastic behavior. The FGM beams are discretized by hexahedral finite elements type C3D20R (continuum stress/displacement, three-dimensional 20-node, reduced integration). We studied several numerical examples of FGM beams and compare the obtained numerical results with those of analytical models in the literature.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献