Photometric Determination of Trace Amounts of Aluminum in Nearly Saturated Rock Salt Solutions Used by Chlor-alkali Industry

Author:

Csorba BenjáminORCID,Farkas LászlóORCID,Mihalkó AndreaORCID,Boros Renáta ZsanettORCID,Gresits Iván LászlóORCID

Abstract

The previously widespread mercury cell technology in chlorine production has now been replaced by more environmentally friendly membrane cell electrolysis which is a Best Available Techniques (BAT) technology. However, this requires a much cleaner brine containing contaminants (Al, Ca, Mg, etc.) in the order of ng/g at most. For this reason, it’s very important to detect trace amounts of aluminum in concentrated saline media in the simplest and fastest way. To the best of our knowledge, no one has previously developed a spectrophotometric method capable of detecting aluminum in ionic forms selectively in the order of ng/g in concentrated saline media, without any preconcentration or separation step. Our advanced analytical method provides an opportunity for this. During the analytical procedure, a colored complex ion is formed from the dissolved aluminum content of the sample with eriochrome cyanine R (ECR) ligand in buffered pH medium. The sensitivity of the measurement is increased by adding quaternary ammonium salt. The colored complex ion is formed in 15 minutes, then the absorbance measurement can be performed for 90 minutes. The effect of rock salt interference was eliminated by proper calibration. In our work the dependence of the signal on temperature, pH, time elapsed after the addition of reactants, the dosing sequence, the salinity of the medium was examined, furthermore, we studied which wavelength-absorbance values give the best fit (highest R2 value) and the highest sensitivity in case of linear calibration. Surprisingly, increasing the salinity significantly improves the sensitivity of the measurement.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3