Building Maps Using Monocular Image-feeds from Windshield-mounted Cameras in a Simulator Environment

Author:

Szántó MátyásORCID,Kobál Sándor,Vajta LászlóORCID,Horváth Viktor GyőzőORCID,Lógó János MátéORCID,Barsi ÁrpádORCID

Abstract

3-dimensional, accurate, and up-to-date maps are essential for vehicles with autonomous capabilities, whose functionality is made possible by machine learning-based algorithms. Since these solutions require a tremendous amount of data for parameter optimization, simulation-to-reality (Sim2Real) methods have been proven immensely useful for training data generation. For creating realistic models to be used for synthetic data generation, crowdsourcing techniques present a resource-efficient alternative. In this paper, we show that using the Carla simulation environment, a crowdsourcing model can be created that mimics a multi-agent data gathering and processing pipeline. We developed a solution that yields dense point clouds based on monocular images and location information gathered by individual data acquisition vehicles. Our method provides scene reconstructions using the robust Structure-from-Motion (SfM) solution of Colmap. Moreover, we introduce a solution for synthesizing dense ground truth point clouds originating from the Carla simulator using a simulated data acquisition pipeline. We compare the results of the Colmap reconstruction with the reference point cloud after aligning them using the iterative closest point algorithm. Our results show that a precise point cloud reconstruction was feasible with this crowdsourcing-based approach, with 54\% of the reconstructed points having an error under 0.05 m, and a weighted root mean square error of 0.0449 m for the entire point cloud.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3