Beyond Trial and Error: Lane Keeping with Monte Carlo Tree Search-Driven Optimization of Reinforcement Learning

Author:

Kővári Bálint12ORCID,Pelenczei Bálint3ORCID,Knáb István Gellért3ORCID,Bécsi Tamás1ORCID

Affiliation:

1. Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

2. Asura Technologies Ltd., H-1122 Budapest, Hungary

3. Systems and Control Laboratory, HUN-REN Institute for Computer Science and Control (SZTAKI), H-1111 Budapest, Hungary

Abstract

In recent years, Reinforcement Learning (RL) has excelled in the realm of autonomous vehicle control, which is distinguished by the absence of limitations, such as specific training data or the necessity for explicit mathematical model identification. Particularly in the context of lane keeping, a diverse set of rewarding strategies yields a spectrum of realizable policies. Nevertheless, the challenge lies in discerning the optimal behavior that maximizes performance. Traditional approaches entail exhaustive training through a trial-and-error strategy across conceivable reward functions, which is a process notorious for its time-consuming nature and substantial financial implications. Contrary to conventional methodologies, the Monte Carlo Tree Search (MCTS) enables the prediction of reward function quality through Monte Carlo simulations, thereby eliminating the need for exhaustive training on all available reward functions. The findings obtained from MCTS simulations can be effectively leveraged to selectively train only the most suitable RL models. This approach helps alleviate the resource-heavy nature of traditional RL processes through altering the training pipeline. This paper validates the theoretical framework concerning the unique property of the Monte Carlo Tree Search algorithm by emphasizing its generality through highlighting crossalgorithmic and crossenvironmental capabilities while also showcasing its potential to reduce training costs.

Funder

European Union

National Research, Development and Innovation Office

Hungarian Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3