Author:
Dang Hung,Nguyen Truong-Thang
Abstract
Output-only structural health monitoring is a highly active research direction because it is a promising methodology for building digital twin applications providing near-real-time monitoring results of the structure. However, one of the technical bottlenecks is how to work effectively with multiple high-dimensional vibration signals. To address this question, this study develops a two-stage data-driven framework based on various advanced techniques, such as time-series feature extractions, self-learning, graph neural network, and machine learning algorithms. At first, multiple features in statistical, time, and spectral domains, are extracted from raw vibration data; then, they subsequently enter a graph convolution network to account for the spatial correlation of sensor locations. After that, the high-performance adaptive boosting machine learning algorithm is leveraged to assess structures' health states. This method allows for learning a lower-dimensional yet informative representation of vibration data; thus, the subsequent monitoring tasks could be performed with reduced time complexity and economical computational resources. The performance of the proposed method is qualitatively and quantitatively demonstrated through two examples involving both numerical and experimental structural data. Furthermore, comparison and robustness studies are carried out, showing that the proposed approach outperforms various machine learning/deep learning-based methods in terms of accuracy and noise/missing-robustness.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献