Civil Structural Health Monitoring and Machine Learning: A Comprehensive Review

Author:

Anjum Asraar1,Hrairi Meftah1ORCID,Aabid Abdul2,Yatim Norfazrina1,Ali Maisarah3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia

2. Department of Engineering Management, College of Engineering, Prince Sultan University, PO BOX 66833, Riyadh 11586, Saudi Arabia

3. Department of Civil Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia

Abstract

In the past five years, the implementation of machine learning (ML) techniques has surged in civil engineering applications, particularly for optimizing and predicting solutions to various challenges.  More robust prediction models may be produced by combining test data collected in the laboratory or field with ML. These models may be used to estimate the compressive strength of masonry or repair mortars, probable damage scenarios in buildings, concrete models, beams, and columns for determining the mechanical characteristics of materials, damage detection in civil structures, and so on.  This comprehensive review aims to clarify the array of ML-based methods employed in civil engineering, specifically focusing on their efficacy in strengthening energy efficiency and cost-effectiveness. In combination with ML, the review explores corresponding soft computing methodologies such as fuzzy logic (FL) and design of experiments (DOE). A variety of case examples that highlight the versatility of these approaches, particularly in applications linked to structural reinforcement, enhance the story. The review navigates difficulties associated with the integration of soft computing in civil engineering and expands its scope to include emerging research directions. This synthesis of advanced artificial intelligence (AI) serves as a guide, providing new researchers with knowledge about a developing field. These methods could revolutionize the current situation by providing creative answers to complex problems that arise in civil structural applications.

Publisher

Gruppo Italiano Frattura

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3