Investigating the Effect of Metal Nanomaterials on the Moisture Sensitivity Process of Asphalt Mixes

Author:

Bargegol Iraj,Sakanlou Farhad,Sohrabi Mohsen,Hamedi Gholam Hossein

Abstract

One of the most common damages in asphalt mixes is the destructive effect of moisture on the binder cohesion and binder–aggregate adhesion which is called moisture damage. There are various methods to improve adhesion and reduce moisture damage in asphalt mixes. The most common of them is using an appropriate additive for binder modification. Accordingly, the current research was conducted to investigate the effect of two nanomaterials (Nano CuO, and Nano SnO2) in 2 different percentages on 2 types of aggregates (granite and limestone) and a type of base binder. In order to investigate the effect of nanomaterials, indirect tensile cyclic loading (the same as resilient modulus test) in dry and wet conditions and surface free energy (SFE) method were used. The moisture sensitivity indicator which shows stripping percentage of aggregate surface in loading cycles using SFE results and indirect tensile cyclic loading, has been considered as the moisture sensitivity indicator in this research. Results of mechanical tests used in this research show that nanomaterials have significantly increased asphalt mixes strength in comparison to control specimens. Results obtained from SFE method show that nanomaterials increase the cohesion free energy; this change causes a reduction in the possibility of failure in binder membrane. Additionally, nanoparticles have increased and reduced basic component and acidic component of SFE, respectively. This leads to improvement of their adhesion with acidic aggregates, which is sensitive to moisture damage.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3