An Experimental Investigation into the Effect of Asphalt Binder Modified with SBR Polymer on the Moisture Susceptibility of Asphalt Mixtures

Author:

Hamedi Gholam Hossein,Sahraei Ali,Hadizadeh Pirbasti Mohammad

Abstract

There are several experimental methods for improving the moisture strength of asphalt mixtures. Utilization of anti-stripping materials is the most prevalent method. In the present paper, the influence of polymer materials on asphalt binder was investigated using repetitive loading test in wet and dry conditions along with thermodynamic parameters based on the Surface Free Energy components of asphalt binder and aggregates. The results obtained from the present study indicated that using Styrene Butadiene Rubber polymer has improved the asphalt mixtures strength against the moisture damage, especially in the specimens made of granite aggregates. Also, Styrene Butadiene Rubber polymer increased the cohesion free energy and reduced the energy released by the system during the stripping event, which represented a decrease in the tendency for stripping. The stripping percentage index, which is obtained by a combination of the results of the repetitive loading test in wet and dry conditions along with the results of thermodynamic parameters, represented that the specimens made of controlled asphalt binder in the loading cycles under wet conditions had a higher stripping rate. It was also concluded that the modulus loss rate in the control asphalt mixtures was faster than the modified specimens.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3