Design Algorithm for Forecasting Model of Transport-Logistic Activity on the Basis of Neuro-Fuzzy Networks

Author:

Lamehov Vladimir1,Korovyakovskiy Evgeny2

Affiliation:

1. Emperor Alexander I St. Petersburg State Transport University

2. Emperor Alexander I Petersburg State Transport University

Abstract

Purpose: To consider the current situation in container transportation market of Leningrad Region. To show the need in the design of new forecasting models. To justify the use of neural fuzzy networks. To consider existing limitations of their application. To suggest the ways to build predictive neural fuzzy models for evaluating promising quantitative indicators of logistics activities. Methods: ANFIS, R-ANFIS, Fuzzy-Partitions, SCRG, GD, LSE, PSO, ABC, FA. Results: The necessity of adaptation of neural fuzzy networks for making forecasts in the field of logistics is pointed on, the structure of a promising model is proposed which takes into account the use and analysis of variety of methods on structural and parametric identification. The shortcomings of particular methods of structural and parametric identification, which affect the accuracy of being obtained forecasts, are indicated. Practical importance: The importance of design of accurate predictive models for key quantitative indicators of logistics activities is shown. The factors influencing the implementation of transport and logistics activities are given which of, reliable forecast is impossible in the situation of limited time and resources. For consideration, the article proposes the existing methods of parametric and structural identification of fuzzy neural networks. An algorithm for adapting existing methods to the use in a transport and logistics process is proposed.

Publisher

Petersburg State Transport University

Subject

General Medicine

Reference28 articles.

1. Транспортная стратегия Российской Федерации на период до 2030 года. Министерство транспорта Российской Федерации. — 2008., Transportnaya strategiya Rossiyskoy Federacii na period do 2030 goda. Ministerstvo transporta Rossiyskoy Federacii. — 2008.

2. Дирекция по развитию транспортной системы Санкт-Петербурга и Ленинградской области. Стратегия развития транспортной системы Санкт-Петербурга и Ленинградской области на период до 2030 года. — 2016., Direkciya po razvitiyu transportnoy sistemy Sankt-Peterburga i Leningradskoy oblasti. Strategiya razvitiya transportnoy sistemy Sankt-Peterburga i Leningradskoy oblasti na period do 2030 goda. — 2016.

3. Pokrovskaya O. Northern Latitudinal Railway Project: Priorities and Drivers / O. Pokrovskaya, R. Fedorenko, A. Kamaletdinov. — 2021. — DOI: 10.1007/978-3-030-60929-0_34., Pokrovskaya O. Northern Latitudinal Railway Project: Priorities and Drivers / O. Pokrovskaya, R. Fedorenko, A. Kamaletdinov. — 2021. — DOI: 10.1007/978-3-030-60929-0_34.

4. Anisimov V. Multimodal Transport Network of the Far Eastern Federal District of Russia / V. Anisimov, L. Bogdanova, O. Morozova, S. Shkurnikov, N. Nesterova. — 2021. — DOI: 10.1007/978-981-33-6208-6_45., Anisimov V. Multimodal Transport Network of the Far Eastern Federal District of Russia / V. Anisimov, L. Bogdanova, O. Morozova, S. Shkurnikov, N. Nesterova. — 2021. — DOI: 10.1007/978-981-33-6208-6_45.

5. Panova Yu. Russian Railways on the Eurasian Market: Issue of Sustainability / Yu. Panova, E. Korovyakovskiy, A. Semerkin et al. // European Business Review. — 2017. — 10.1108/EBR-01-2016-0008., Panova Yu. Russian Railways on the Eurasian Market: Issue of Sustainability / Yu. Panova, E. Korovyakovskiy, A. Semerkin et al. // European Business Review. — 2017. — 10.1108/EBR-01-2016-0008.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3