Construction of short-term forecast of the number of railcars at the stations and non-public routes. Results and analysis

Author:

Lamehov Vladimir1,Korovyakovskiy Evgeny2

Affiliation:

1. Emperor Alexander I St. Petersburg State Transport University

2. Emperor Alexander I Petersburg State Transport University

Abstract

Objective: collect raw data for building predictive models. Analyze the initial data, identify data outliers and outliers, divide the data into time intervals, calculate correlation coefficients, partial autocorrelation, cross-correlation, analyze the trend and seasonality of the obtained time series. Using autoregressive models, machine learning models, neuro-fuzzy models to build forecasts of time series and determine the quality of the obtained forecasts. Methods: point density, autocorrelation, partial autocorrelation, cross-correlation, Foster-Stewart test, Dickey-Fuller test, ARMA, MLP, Encoder-Decoder LTSM, TSK, Fuzzy-Partitions, SCRG, Transformers. Results: we obtained estimates of the prediction accuracy of the selected models, compared the results of the predictive models trained on different samples of initial data. Conclusions are made about the efficiency and methods of building predictive models. Practical significance: the significance of building accurate predictive models for the key quantitative indicators of stations and nonpublic routes operation is shown. The factors influencing the accuracy of the obtained forecasts are analyzed.

Publisher

Petersburg State Transport University

Reference10 articles.

1. Ламехов В. А. Алгоритм построения прогноз ной модели транспортно-­логистической деятельно сти на основе применения нечетких нейронных сетей / В. А. Ламехов, Е.К. Коровяковский // Бюллетень результатов научных исследований. 2022. №3. С. 137– 150. DOI: 10.20295/2223-9987-2022-3-137-150., Lamehov V. A. Algoritm postroeniya prognoz noy modeli transportno-­logisticheskoy deyatel'no sti na osnove primeneniya nechetkih neyronnyh setey / V. A. Lamehov, E.K. Korovyakovskiy // Byulleten' rezul'tatov nauchnyh issledovaniy. 2022. №3. S. 137– 150. DOI: 10.20295/2223-9987-2022-3-137-150.

2. Свидетельство о государственной регистрации программы для ЭВМ № 2022684797 Российская Фе дерация. Программа автоматизированного определения количества нечетких правил и параметров антецедентов и консеквентов нечетких нейронных сетей типа TSK: № 2022684298: заявл. 07.12.2022: опубл. 19.12.2022 / В. А. Ламехов; заявитель Федеральное государственное бюджетное образовательное учреж дение высшего образования «Петербургский государ ственный университет путей сообщения Императора Александра I»., Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM № 2022684797 Rossiyskaya Fe deraciya. Programma avtomatizirovannogo opredeleniya kolichestva nechetkih pravil i parametrov antecedentov i konsekventov nechetkih neyronnyh setey tipa TSK: № 2022684298: zayavl. 07.12.2022: opubl. 19.12.2022 / V. A. Lamehov; zayavitel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezh denie vysshego obrazovaniya «Peterburgskiy gosudar stvennyy universitet putey soobscheniya Imperatora Aleksandra I».

3. Dolgopolov P., Konstantinov D., Rybalchenko L., et al. Optimization of train routes based on neuro-­fuzzy modeling and genetic algorithms. Procedia Comput Sci, 2019. 149, 11–18. DOI: 10.1016/j.procs.2019.01.101., Dolgopolov P., Konstantinov D., Rybalchenko L., et al. Optimization of train routes based on neuro-­fuzzy modeling and genetic algorithms. Procedia Comput Sci, 2019. 149, 11–18. DOI: 10.1016/j.procs.2019.01.101.

4. Ermakova A. V. Application of fuzzy mathemat ics for choosing maintenance intervals for non-public railway tracks / A. V. Ermakova // Nexo Revista Cientí fica. 2021. Vol. 34, no. 6. P. 1885–1891. DOI: 10.5377/ nexo.v34i06.13194. EDN DBYXRY., Ermakova A. V. Application of fuzzy mathemat ics for choosing maintenance intervals for non-public railway tracks / A. V. Ermakova // Nexo Revista Cientí fica. 2021. Vol. 34, no. 6. P. 1885–1891. DOI: 10.5377/ nexo.v34i06.13194. EDN DBYXRY.

5. Makridakis S., Spiliotis E., Assimakopoulos V. Statistical and Machine Learning forecasting methods : Concerns and ways forward. PLoS ONE, 2018. 13 (3) : e0194889. DOI: 10.1371/journal.pone.0194889., Makridakis S., Spiliotis E., Assimakopoulos V. Statistical and Machine Learning forecasting methods : Concerns and ways forward. PLoS ONE, 2018. 13 (3) : e0194889. DOI: 10.1371/journal.pone.0194889.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3