Affiliation:
1. Emperor Alexander I St. Petersburg State Transport University
2. Emperor Alexander I Petersburg State Transport University
Abstract
Objective: collect raw data for building predictive models. Analyze the initial data, identify data outliers and outliers, divide the data into time intervals, calculate correlation coefficients, partial autocorrelation, cross-correlation, analyze the trend and seasonality of the obtained time series. Using autoregressive models, machine learning models, neuro-fuzzy models to build forecasts of time series and determine the quality of the obtained forecasts. Methods: point density, autocorrelation, partial autocorrelation, cross-correlation, Foster-Stewart test, Dickey-Fuller test, ARMA, MLP, Encoder-Decoder LTSM, TSK, Fuzzy-Partitions, SCRG, Transformers. Results: we obtained estimates of the prediction accuracy of the selected models, compared the results of the predictive models trained on different samples of initial data. Conclusions are made about the efficiency and methods of building predictive models. Practical significance: the
significance of building accurate predictive models for the key quantitative indicators of stations and nonpublic routes operation is shown. The factors influencing the accuracy of the obtained forecasts are analyzed.
Publisher
Petersburg State Transport University
Reference10 articles.
1. Ламехов В. А. Алгоритм построения прогноз ной модели транспортно-логистической деятельно сти на основе применения нечетких нейронных сетей / В. А. Ламехов, Е.К. Коровяковский // Бюллетень результатов научных исследований. 2022. №3. С. 137– 150. DOI: 10.20295/2223-9987-2022-3-137-150., Lamehov V. A. Algoritm postroeniya prognoz noy modeli transportno-logisticheskoy deyatel'no sti na osnove primeneniya nechetkih neyronnyh setey / V. A. Lamehov, E.K. Korovyakovskiy // Byulleten' rezul'tatov nauchnyh issledovaniy. 2022. №3. S. 137– 150. DOI: 10.20295/2223-9987-2022-3-137-150.
2. Свидетельство о государственной регистрации программы для ЭВМ № 2022684797 Российская Фе дерация. Программа автоматизированного определения количества нечетких правил и параметров антецедентов и консеквентов нечетких нейронных сетей типа TSK: № 2022684298: заявл. 07.12.2022: опубл. 19.12.2022 / В. А. Ламехов; заявитель Федеральное государственное бюджетное образовательное учреж дение высшего образования «Петербургский государ ственный университет путей сообщения Императора Александра I»., Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM № 2022684797 Rossiyskaya Fe deraciya. Programma avtomatizirovannogo opredeleniya kolichestva nechetkih pravil i parametrov antecedentov i konsekventov nechetkih neyronnyh setey tipa TSK: № 2022684298: zayavl. 07.12.2022: opubl. 19.12.2022 / V. A. Lamehov; zayavitel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezh denie vysshego obrazovaniya «Peterburgskiy gosudar stvennyy universitet putey soobscheniya Imperatora Aleksandra I».
3. Dolgopolov P., Konstantinov D., Rybalchenko L., et al. Optimization of train routes based on neuro-fuzzy modeling and genetic algorithms. Procedia Comput Sci, 2019. 149, 11–18. DOI: 10.1016/j.procs.2019.01.101., Dolgopolov P., Konstantinov D., Rybalchenko L., et al. Optimization of train routes based on neuro-fuzzy modeling and genetic algorithms. Procedia Comput Sci, 2019. 149, 11–18. DOI: 10.1016/j.procs.2019.01.101.
4. Ermakova A. V. Application of fuzzy mathemat ics for choosing maintenance intervals for non-public railway tracks / A. V. Ermakova // Nexo Revista Cientí fica. 2021. Vol. 34, no. 6. P. 1885–1891. DOI: 10.5377/ nexo.v34i06.13194. EDN DBYXRY., Ermakova A. V. Application of fuzzy mathemat ics for choosing maintenance intervals for non-public railway tracks / A. V. Ermakova // Nexo Revista Cientí fica. 2021. Vol. 34, no. 6. P. 1885–1891. DOI: 10.5377/ nexo.v34i06.13194. EDN DBYXRY.
5. Makridakis S., Spiliotis E., Assimakopoulos V. Statistical and Machine Learning forecasting methods : Concerns and ways forward. PLoS ONE, 2018. 13 (3) : e0194889. DOI: 10.1371/journal.pone.0194889., Makridakis S., Spiliotis E., Assimakopoulos V. Statistical and Machine Learning forecasting methods : Concerns and ways forward. PLoS ONE, 2018. 13 (3) : e0194889. DOI: 10.1371/journal.pone.0194889.