Kenmotsu Manifolds with Zero Ricci-Schouten Tensor

Author:

Bukusheva Aliya V.1

Affiliation:

1. Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

Abstract

The paper is dedicated to the investigation of the interior geometry of the Kenmotsu manifolds M. By the interior geometry of the manifold M we mean the aggregate of the properties of the manifold that depend only on the closing of the distribution D of the Kenmotsu manifold as well as on the parallel transport of the vectors from the distribution D along arbitrary curves of the manifold. The invariants of the interior geometry of a Kenmotsu manifold are the following: the Schouten curvature tensor; the 1-form η generating the distribution D; the Lie derivative of the metric tensor g along the structure vector field ; the Schouten-Wagner admissible tensor fields with the components with respect to adapted coordinates; the structural endomorphism φ; the endomorphism N that allows to prolong the interior connection to a connection in a vector bundle. A special attention is payed to the Ricci-Schouten tensor. In particular, it is stated that a Kenmotsu manifold with zero Ricci-Schouten tensor is an Einstein manifold. Conversely, if M is an η-Einstein Kenmotsu manifold and then M is an Einstein manifold with zero Ricci-Schouten tensor. It is proved that the Ricci-Schouten tensor is zero if and only if the Kenmotsu manifold M is locally Ricci-symmetric. This implies the following well-known result: a Kenmotsu manifold is an Einstein manifold if and only if it is locally Ricci-symmetric. An N-connection with torsion, is introduced; this connection is Ricci-flat if and only if M is an Einstein manifold.

Publisher

Southern Federal University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prolonged almost quazi-Sasakian structures;Differential Geometry of Manifolds of Figures;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3