Prolonged almost quazi-Sasakian structures

Author:

Galaev S.V.1ORCID

Affiliation:

1. Saratov State University

Abstract

The notion of an almost quasi-Sasakian manifold is introduced. A ma­nifold with an almost quasi-Sasakian structure is a generalization of a quasi-Sasakian manifold; the difference is that an almost quasi-Sasakian manifold is almost normal. A characteristic criterion for an almost quasi-Sasakian manifold is formulated. Conditions are found under which al­most quasi-Sasakian manifolds are quasi-Sasakian manifolds. In particu­lar, an almost quasi-Sasakian manifold is a quasi-Sasakian manifold if and only if the first and second structure endomorphisms commute. An extended almost contact metric structure is defined on the distribution of an almost contact metric manifold. It follows from the definition of an extended structure that it is a quasi-Sasakian structure only if the original structure is cosymplectic with zero Schouten curvature tensor. It is proved that the constructed extended almost contact metric structure is the struc­ture of an almost quasi-Sasakian manifold if and only if the Schouten ten­sor of the original manifold is equal to zero. Relationships are found be­tween the second structure endomorphisms of the original and extended structures.

Publisher

Immanuel Kant Baltic Federal University

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3