In vitro evaluation of a ball-and-socket cervical disc prosthesis with cranial geometric center

Author:

Barrey Cédric12,Mosnier Thomas2,Jund Jérôme3,Perrin Gilles1,Skalli Wafa2

Affiliation:

1. Department of Neurosurgery, Hôpital Neurologique P. Wertheimer, Lyon;

2. Laboratory of Biomechanics, Arts et Metiers ParisTech, ENSAM, Paris; and

3. Department of Biostatistics, Centre Hospitalier de la Région Annecienne, Annecy, France

Abstract

Object Few biomechanical in vitro studies have reported the effects of disc replacement on motion and kinematics of the cervical spine. The purpose of this study was to analyze motion through 3D load-displacement curves before and after implantation of a ball-and-socket cervical disc prosthesis with cranial geometric center; special focus was placed on coupled motion, which is a well-known aspect of normal cervical spine kinematics. Methods Six human cervical spines were studied. There were 3 male and 3 female cadaveric specimens (mean age at death 68.5 ± 5 years [range 54–74 years]). The specimens were evaluated sequentially in 2 different conditions: first they were tested intact; then the spinal specimens were tested after implantation of a ball-and-socket cervical disc prosthesis, the Discocerv, at the C5–6 level. Pure moment loading was applied in flexion/extension, left and right axial rotation, and left and right lateral bending. All tests were performed under load control with a 3D measurement system. Results No differences were found to be statistically significant after comparison of range of motion between intact and instrumented spines for all loading conditions. The mean range of motion for intact spines was 10.3° in flexion/extension, 5.6° in lateral bending, and 5.4° in axial rotation; that for instrumented spines was 10.4, 5.2, and 4.8°, respectively. No statistical difference was observed for the neutral zone nor stiffness between intact and instrumented spines. Finally, the coupled motions were also preserved during axial rotation and lateral bending, with no significant difference before and after implantation. Conclusions This study demonstrated that, under specific testing conditions, a ball-and-socket joint with cranial geometrical center can restore motion in the 3 planes after discectomy in the cervical spine while maintaining physiological coupled motions during axial rotation and lateral bending.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3