Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury

Author:

Diringer Michael N.1,Aiyagari Venkatesh1,Zazulia Allyson R.12,Videen Tom O.12,Powers William J.123

Affiliation:

1. Departments of Neurology and Neurological Surgery and

2. Radiology, Neurology/Neurosurgery Intensive Care Unit; and

3. Lillian Strauss Institute, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri

Abstract

Object Recent observations indicate that traumatic brain injury (TBI) may be associated with mitochondrial dysfunction. This, along with growing use of brain tissue PO2 monitors, has led to considerable interest in the potential use of ventilation with 100% oxygen to treat patients who have suffered a TBI. To date, the impact of normobaric hyperoxia has only been evaluated using indirect measures of its impact on brain metabolism. To determine if normobaric hyperoxia improves brain oxygen metabolism following acute TBI, the authors directly measured the cerebral metabolic rate for oxygen (CMRO2) with positron emission tomography before and after ventilation with 100% oxygen. Methods Baseline measurements of arterial and jugular venous blood gases, mean arterial blood pressure, intracranial pressure, cerebral blood flow (CBF), cerebral blood volume, oxygen extraction fraction, and CMRO2 were made at baseline while the patients underwent ventilation with a fraction of inspired oxygen (FiO2) of 0.3 to 0.5. The FiO2 was then increased to 1.0, and 1 hour later all measurements were repeated. Five patients were studied a mean of 17.9 ±5.8 hours (range 12–23 hours) after trauma. The median admission Glasgow Coma Scale score was 7 (range 3–9). During ventilation with 100% oxygen, there was a marked rise in PaO2 (from 117 ± 31 to 371 ± 99 mm Hg, p < 0.0001) and a small rise in arterial oxygen content (12.7 ± 4.0 to 13.3 ± 4.6 vol %, p = 0.03). There were no significant changes in systemic hemodynamic or other blood gas measurements. At the baseline evaluation, bihemispheric CBF was 39 ± 12 ml/100 g/min and bihemispheric CMRO2 was 1.9 ± 0.6 ml/100 g/min. During hyperoxia there was no significant change in either of these measurements. (Values are given as the mean ± standard deviation throughout.) Conclusions Normobaric hyperoxia did not improve brain oxygen metabolism. In the absence of outcome data from clinical trials, these preliminary data do not support the use of 100% oxygen in patients with acute TBI, although larger confirmatory studies are needed.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3