Seeding neural progenitor cells on silicon-based neural probes

Author:

Azemi Erdrin12,Gobbel Glenn T.34,Cui Xinyan Tracy124

Affiliation:

1. Departments of Bioengineering and

2. Center for the Neural Basis of Cognition; and

3. Neurological Surgery, University of Pittsburgh;

4. McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania

Abstract

Object Chronically implanted neural electrode arrays have the potential to be used as neural prostheses in patients with various neurological disorders. While these electrodes perform well in acute recordings, they often fail to function reliably in clinically relevant chronic settings because of glial encapsulation and the loss of neurons. Surface modification of these implants may provide a means of improving their biocompatibility and integration within host brain tissue. The authors proposed a method of improving the brain-implant interface by seeding the implant's surface with a layer of neural progenitor cells (NPCs) derived from adult murine subependyma. Neural progenitor cells may reduce the foreign body reaction by presenting a tissue-friendly surface and repair implant-induced injury and inflammation by releasing neurotrophic factors. In this study, the authors evaluated the growth and differentiation of NPCs on laminin-immobilized probe surfaces and explored the potential impact on transplant survival of these cells. Methods Laminin protein was successfully immobilized on the silicon surface via covalent binding using silane chemistry. The growth, adhesion, and differentiation of NPCs expressing green fluorescent protein (GFP) on laminin-modified silicon surfaces were characterized in vitro by using immunocytochemical techniques. Shear forces were applied to NPC cultures in growth medium to evaluate their shearing properties. In addition, neural probes seeded with GFP-labeled NPCs cultured in growth medium for 14 days were implanted in murine cortex. The authors assessed the adhesion properties of these cells during implantation conditions. Moreover, the tissue response around NPC-seeded implants was observed after 1 and 7 days postimplantation. Results Significantly improved NPC attachment and growth was found on the laminin-immobilized surface compared with an unmodified control before and after shear force application. The NPCs grown on the laminin-immobilized surface showed differentiation potential similar to those grown on polylysine-treated well plates, as previously reported. Viable (still expressing GFP) NPCs were found on and in proximity to the neural implant after 1 and 7 days postimplantation. Preliminary examinations indicated that the probe's NPC coating might reduce the glial response at these 2 different time points. Conclusions The authors' findings suggest that NPCs can differentiate and strongly adhere to laminin-immobilized surfaces, providing a stable matrix for these cells to be implanted in brain tissue on the neural probe's surface. In addition, NPCs were found to improve the astrocytic reaction around the implant site. Further in vivo work revealing the mechanisms of this effect could lead to improvement of biocompatibility and chronic recording performance of neural probes.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3