Affiliation:
1. Departments of Mechanical Engineering and
2. Neurosurgery, Koc University, Istanbul, Turkey
Abstract
OBJECT
The authors evaluated the biomechanical effects of an interspinous process (ISP) device on kinematics and load sharing at the implanted and adjacent segments.
METHODS
A 3D finite-element (FE) model of the lumbar spine (L1–5) was developed and validated through comparison with published in vitro study data. Specifically, validation was achieved by a flexible (load-control) approach in 3 main planes under a pure moment of 10 Nm and a compressive follower load of 400 N. The ISP device was inserted between the L-3 and L-4 processes. Intact and implanted cases were simulated using the hybrid protocol in all motion directions. The resultant motion, facet load, and intradiscal pressure after implantation were investigated at the index and adjacent levels. In addition, stress at the bone-implant interface was predicted.
RESULTS
The hybrid approach, shown to be appropriate for adjacent-level investigations, predicted that the ISP device would decrease the range of motion, facet load, and intradiscal pressure at the index level relative to the corresponding values for the intact spine in extension. Specifically, the intradiscal pressure induced after implantation at adjacent segments increased by 39.7% and by 6.6% at L2–3 and L4–5, respectively. Similarly, facet loads at adjacent segments after implantation increased up to 60% relative to the loads in the intact case. Further, the stress at the bone-implant interface increased significantly. The influence of the ISP device on load sharing parameters in motion directions other than extension was negligible.
CONCLUSIONS
Although ISP devices apply a distraction force on the processes and prevent further extension of the index segment, their implantation may cause changes in biomechanical parameters such as facet load, intradiscal pressure, and range of motion at adjacent levels in extension.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献