A novel artificial vertebral implant with Gyroid porous structures for reducing the subsidence and mechanical failure rate after vertebral body replacement

Author:

Shang Peng,Ma Benyuan,Hou Guanghui,Zhang Yihai,Cui Lunxu,Song Wanzhen,Liu Yancheng

Abstract

Abstract Background Prosthesis subsidence and mechanical failure were considered significant threats after vertebral body replacement during the long-term follow-up. Therefore, improving and optimizing the structure of vertebral substitutes for exceptional performance has become a pivotal challenge in spinal reconstruction. Methods The study aimed to develop a novel artificial vertebral implant (AVI) with triply periodic minimal surface Gyroid porous structures to enhance the safety and stability of prostheses. The biomechanical performance of AVIs under different loading conditions was analyzed using the finite element method. These implants were fabricated using selective laser melting technology and evaluated through static compression and subsidence experiments. Results The results demonstrated that the peak stress in the Gyroid porous AVI was consistently lower than that in the traditional porous AVI under all loading conditions, with a maximum reduction of 73.4%. Additionally, it effectively reduced peak stress at the bone-implant interface of the vertebrae. Static compression experiments demonstrated that the Gyroid porous AVI was about 1.63 times to traditional porous AVI in terms of the maximum compression load, indicating that Gyroid porous AVI could meet the safety requirement. Furthermore, static subsidence experiments revealed that the subsidence tendency of Gyroid porous AVI in polyurethane foam (simulated cancellous bone) was approximately 15.7% lower than that of traditional porous AVI. Conclusions The Gyroid porous AVI exhibited higher compressive strength and lower subsidence tendency than the strut-based traditional porous AVI, indicating it may be a promising substitute for spinal reconstruction.

Funder

Natural Science Fund Project of Hebei Province

Scientific Research Program of the Hebei Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3