Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms

Author:

Kadasi Laith M.12,Dent Walter C.1,Malek Adel M.12

Affiliation:

1. Cerebrovascular and Endovascular Division, Department of Neurosurgery, Tufts Medical Center; and

2. Tufts University School of Medicine, Boston, Massachusetts

Abstract

Object Wall shear stress (WSS) plays a role in regulating endothelial function and has been suspected in cerebral aneurysm rupture. The aim of this study was to evaluate the spatial relationship between localized thinning of the aneurysm dome and estimated hemodynamic factors, hypothesizing that a low WSS would correlate with aneurysm wall degeneration. Methods Steady-state computational fluid dynamics analysis was performed on 16 aneurysms in 14 patients based on rotational angiographic volumes to derive maps of WSS, its spatial gradient (WSSG), and pressure. Local dome thickness was estimated categorically based on tissue translucency from high-resolution intraoperative microscopy findings. Each computational model was oriented to match the corresponding intraoperative view and numerically sampled in thin and normal adjacent dome regions, with controls at the neck and parent vessel. The pressure differential was computed as the difference between aneurysm dome points and the mean neck pressure. Pulsatile time-dependent confirmatory analysis was carried out in 7 patients. Results Matched-pair analysis revealed significantly lower levels of WSS (0.381 Pa vs 0.816 Pa; p < 0.0001) in thin-walled dome areas than in adjacent baseline thickness regions. Similarly, log WSSG and log WSS × WSSG were both lower in thin regions (both p < 0.0001); multivariate logistic regression analysis identified lower WSS and higher pressure differential as independent correlates of lower wall thickness with an area under the curve of 0.80. This relationship was observed in both steady-state and time-dependent pulsatile analyses. Conclusions Thin-walled regions of unruptured cerebral aneurysms colocalize with low WSS, suggesting a cellular mechanotransduction link between areas of flow stasis and aneurysm wall thinning.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3