Aneurysm Inflow-Angle as a Discriminant for Rupture in Sidewall Cerebral Aneurysms

Author:

Baharoglu Merih I.1,Schirmer Clemens M.1,Hoit Daniel A.1,Gao Bu-Lang1,Malek Adel M.1

Affiliation:

1. From the Cerebrovascular and Endovascular Division, Department of Neurosurgery, Tufts Medical Center and Tufts University School of Medicine, Boston, Mass.

Abstract

Background and Purpose— The ability to discriminate between ruptured and unruptured cerebral aneurysms on a morphological basis may be useful in clinical risk stratification. The objective was to evaluate the importance of inflow-angle (IA), the angle separating parent vessel and aneurysm dome main axes. Methods— IA, maximal dimension, height–width ratio, and dome–neck aspect ratio were evaluated in sidewall-type aneurysms with respect to rupture status in a cohort of 116 aneurysms in 102 patients. Computational fluid dynamic analysis was performed in an idealized model with variational analysis of the effect of IA on intra-aneurysmal hemodynamics. Results— Univariate analysis identified IA as significantly more obtuse in the ruptured subset (124.9°±26.5° versus 105.8°±18.5°, P =0.0001); similarly, maximal dimension, height–width ratio, and dome–neck aspect ratio were significantly greater in the ruptured subset; multivariate logistic regression identified only IA ( P =0.0158) and height–width ratio ( P =0.0017), but not maximal dimension or dome–neck aspect ratio, as independent discriminants of rupture status. Computational fluid dynamic analysis showed increasing IA leading to deeper migration of the flow recirculation zone into the aneurysm with higher peak flow velocities and a greater transmission of kinetic energy into the distal portion of the dome. Increasing IA resulted in higher inflow velocity and greater wall shear stress magnitude and spatial gradients in both the inflow zone and dome. Conclusions— Inflow-angle is a significant discriminant of rupture status in sidewall-type aneurysms and is associated with higher energy transmission to the dome. These results support inclusion of IA in future prospective aneurysm rupture risk assessment trials.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3