Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces

Author:

Leuthardt Eric C.12,Freudenberg Zac3,Bundy David1,Roland Jarod2

Affiliation:

1. 1Departments of Biomedical Engineering,

2. 2Neurological Surgery, and

3. 3Computer Science, Washington University in St. Louis, Missouri

Abstract

Object There is a growing interest in the use of recording from the surface of the brain, known as electrocorticography (ECoG), as a practical signal platform for brain-computer interface application. The signal has a combination of high signal quality and long-term stability that may be the ideal intermediate modality for future application. The research paradigm for studying ECoG signals uses patients requiring invasive monitoring for seizure localization. The implanted arrays span cortex areas on the order of centimeters. Currently, it is unknown what level of motor information can be discerned from small regions of human cortex with microscale ECoG recording. Methods In this study, a patient requiring invasive monitoring for seizure localization underwent concurrent implantation with a 16-microwire array (1-mm electrode spacing) placed over primary motor cortex. Microscale activity was recorded while the patient performed simple contra- and ipsilateral wrist movements that were monitored in parallel with electromyography. Using various statistical methods, linear and nonlinear relationships between these microcortical changes and recorded electromyography activity were defined. Results Small regions of primary motor cortex (< 5 mm) carry sufficient information to separate multiple aspects of motor movements (that is, wrist flexion/extension and ipsilateral/contralateral movements). Conclusions These findings support the conclusion that small regions of cortex investigated by ECoG recording may provide sufficient information about motor intentions to support brain-computer interface operations in the future. Given the small scale of the cortical region required, the requisite implanted array would be minimally invasive in terms of surgical placement of the electrode array.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3