The role of neurotrophic factors in nerve regeneration

Author:

Gordon Tessa

Abstract

This review considers the 2 sources of neurotrophic factors in the peripheral nervous system (PNS), the neurons and the nonneuronal cells in the denervated distal nerve stumps, and their role in axon regeneration. Morphological assessment of regenerative success in response to administration of exogenous growth factors after nerve injury and repair has indicated a role of the endogenous neurotrophic factors from Schwann cells in the distal nerve stump. However, the increased number of axons may reflect more neurons regenerating their axons and/or increased numbers of axon sprouts from the same number of neurons. Using fluorescent dyes to count neurons that regenerated their axons across a suture site and into distal nerve stumps, brain-derived neurotrophic factor (BDNF) and glial cell–derived neurotrophic factor (GDNF) were found not to increase the number of neurons that regenerated their axons after immediate nerve repair. Nevertheless, the factors did reverse the deleterious effect of delayed nerve repair, indicating that the axons that regenerate into the distal nerve stump normally have access to sufficient levels of endogenous neurotrophic factors to sustain their regeneration, while neurons that do not have access to these factors require exogenous factors to sustain axon regeneration. Neurons upregulate neurotrophic factors after axotomy. The upregulation is normally slow, beginning after 7 days and occurring in association with a protracted period of axonal regeneration in which axons grow out from the proximal nerve stump across a suture site over a period of 1 month in rodents. This staggered axon regeneration across the suture site is accelerated by a 1-hour period of low-frequency electrical stimulation that simultaneously accelerates the expression of BDNF and its trkB receptor in the neurons. Elevation of the level of BDNF after 2 days to > 3 times that found in unstimulated neurons was accompanied by elevation of the level of cAMP and followed by accelerated upregulation of growth-associated genes, tubulin, actin, and GAP-43 and downregulation of neurofilament protein. Elevation of cAMP levels via rolipram inhibition of phosphodiesterase 4 mimicked the effect of the low-frequency electrical stimulation. In conclusion, the enhanced upregulation of neurotrophic factors in the electrically stimulated axotomized neurons accelerates axon outgrowth into the distal nerve stumps where endogenous sources of growth factors in the Schwann cells support the regeneration of the axons toward the denervated targets. The findings provide strong support for endogenous neurotrophic factors of axotomized neurons and of denervated Schwann cells playing a critical role in supporting axon regeneration in the PNS.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3