A Study on the Role of miR-126 in the Repair Process after Spinal Cord Injury

Author:

Suo Yaojun1,Wang Chunfang2

Affiliation:

1. Department of Anesthesia, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health,Hangzhou, 310053, China

2. Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China

Abstract

Background: Spinal Cord Injury (SCI) results in motor, sensory, and autonomic dysfunctions and causes social and economic problems. Surgery, medication, and stem cell transplantation are therapeutic strategies for SCI. The use of endogenous neural stem cells seems preferable due to their lower immune responses. miR-126 serves as a promising microRNA for reducing inflammation after SCI. It can promote angiogenesis and proliferation of neural stem cells Objectives: This study aimed to observe changes in miR-126 expression after SCI in an animal mice model. Methods: A total of 42 healthy adult FVB mice were divided equally into 7 groups (6 SCI model versus 1 control). At different periods following SCI establishment in the model groups, Basso Mouse Scale score (BMS), histopathological changes, and expression levels of miR-126 were evaluated in the model groups compared to the control one. Results:: The BMS score increased to a certain extent as the time after spinal cord injury progressed. HE and Nissl staining showed that the acute period (1-7 days) after spinal cord injury was characterized by neuronal loss, whereas the chronic phase (21st day) was characterized by scar and cavity formation. Compared with the control group, the model group exhibited decreased expression of miR-126 during the acute phase (days 1-7 post-SCI). However, its expression increased by 21th day after SCI. Conclusion: Overexpressed miR-126 can contribute to reduced SCI-related damages, which may result in the promotion of the growth and proliferation of neural stem cells as well as the repair of motor function.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3