Affiliation:
1. Institut National de la Santé et de la Recherche Médicale U828, Université Victor Segalen Bordeaux 2; and
2. Institut National de la Santé et de la Recherche Médicale U684, Université Nancy, France
Abstract
Object
Amine oxidases play a key role in the polymerization and cross-linking of the collagens and elastic lamellae of the arterial wall. The loss of elastic lamellae integrity is one of the first steps in the genesis of a cerebral aneurysm. The authors investigated the relation between semicarbazide-sensitive amine oxidase (SSAO) and the organization of the cerebral arterial wall during aneurysm development.
Methods
Intracranial aneurysms were induced in rats via unilateral carotid artery ligation and renovascular hypertension. This modified Hashimoto model was used to create elevated blood pressure associated with shear stress in cerebral arteries. The authors immunohistologically investigated some markers of the extracellular matrix (Types I, III, and IV collagen and elastin), vascular smooth muscle cell differentiation (smooth muscle myosin heavy chain [sm-MHC], α–smooth muscle actin, and desmin), and amine oxidases (SSAO and lysyl oxidase [LOX]) in the cerebral arterial wall in control and treated rats 1, 2, 3, 4, and 6 months after the surgical procedure.
Results
The authors found severe disorganization and thinning of the elastic lamellae and a dramatic reduction in SSAO activity and immunostaining during cerebral aneurysm development. In contrast, LOX markers were slightly increased. Elastic lamellae thinning was highly correlated with decreases in SSAO (r = 0.76, p < 0.0001). There was also a correlation between sm-MHC and SSAO levels.
Conclusions
The data suggested that cerebral hemodynamic modifications induce decreases in SSAO activity resulting in cell dedifferentiation and inducing dysregulation of glucose transport.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献