Association between semicarbazide-sensitive amine oxidase, a regulator of the glucose transporter, and elastic lamellae thinning during experimental cerebral aneurysm development

Author:

Sibon Igor1,Mercier Nathalie2,Darret Danièle1,Lacolley Patrick2,Lamazière Jean-Marie Daniel1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale U828, Université Victor Segalen Bordeaux 2; and

2. Institut National de la Santé et de la Recherche Médicale U684, Université Nancy, France

Abstract

Object Amine oxidases play a key role in the polymerization and cross-linking of the collagens and elastic lamellae of the arterial wall. The loss of elastic lamellae integrity is one of the first steps in the genesis of a cerebral aneurysm. The authors investigated the relation between semicarbazide-sensitive amine oxidase (SSAO) and the organization of the cerebral arterial wall during aneurysm development. Methods Intracranial aneurysms were induced in rats via unilateral carotid artery ligation and renovascular hypertension. This modified Hashimoto model was used to create elevated blood pressure associated with shear stress in cerebral arteries. The authors immunohistologically investigated some markers of the extracellular matrix (Types I, III, and IV collagen and elastin), vascular smooth muscle cell differentiation (smooth muscle myosin heavy chain [sm-MHC], α–smooth muscle actin, and desmin), and amine oxidases (SSAO and lysyl oxidase [LOX]) in the cerebral arterial wall in control and treated rats 1, 2, 3, 4, and 6 months after the surgical procedure. Results The authors found severe disorganization and thinning of the elastic lamellae and a dramatic reduction in SSAO activity and immunostaining during cerebral aneurysm development. In contrast, LOX markers were slightly increased. Elastic lamellae thinning was highly correlated with decreases in SSAO (r = 0.76, p < 0.0001). There was also a correlation between sm-MHC and SSAO levels. Conclusions The data suggested that cerebral hemodynamic modifications induce decreases in SSAO activity resulting in cell dedifferentiation and inducing dysregulation of glucose transport.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3