Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys

Author:

Brown W. Jann,Babb Thomas L.,Soper Henry V.,Lieb Jeffrey P.,Ottino Carlos A.,Crandall Paul H.

Abstract

✓ Light and electron microscopic analyses were carried out on the stimulated and unstimulated paravermal cortices of six rhesus monkeys that had electrodes implanted on their cerebella for 2 months. The electrodes and the stimulation regime (10 p.p.s.: 8 min on, 8 min off) were similar to those used to stimulate the human cerebellum for treatment of certain neurological disorders. Mere presence of the electrode array in the posterior fossa for 2 months resulted in some meningeal thickening, attenuation of the molecular layer, and loss of Purkinje cells immediately beneath the electrode array. There was no evidence of scarring. After 205 hours of stimulation (7.38 × 106 pulses) over 18 days, a charge of 0.5 µC/ph or estimated charge density of 7.4 µC/sq cm/ph resulted in no damage to the cerebellum attributable to electrical stimulation per se. Such a charge/phase is about five times the threshold for evocation of cerebellar efferent activity, and might be considered “safe” for stimulation of human cerebellum. Charge density/phase and charge/phase were directly related to increased cerebellar injury in the six other cerebellar cortices stimulated. Leptomeningeal thickening increased with increased charge density. Injury included severe molecular layer attenuation, ongoing destruction of Purkinje cells, gliosis, ongoing degeneration of myelinated axons, collagen intrusion, and increased levels of local polysaccharides. In all cases, even with damage that destroyed all conducting elements beneath the electrodes, there was no damage further than 1 to 2 mm from the edges of the electrode arrays.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3