Hydrodynamic properties of the Certas hydrocephalus shunt

Author:

Czosnyka Zofia,Pickard John D.,Czosnyka Marek

Abstract

Object Independent testing of hydrocephalus shunts provides information about the quality of CSF drainage after shunt implantation. Moreover, hydrodynamic parameters of a valve assessed in the laboratory create a comparative pattern for testing of shunt performance in vivo. This study sought to assess the hydrodynamic parameters of the Certas valve, a new model of a hydrocephalus shunt. Methods The Certas valve is an adjustable ball-on-spring hydrocephalus valve. It can be adjusted magnetically in vivo in 7 steps, equally distributed within the therapeutic limit for hydrocephalus, and the eighth step at high pressures intended to block CSF drainage. The magnetically adjustable rotor is designed to prevent accidental readjustment of the valve in a magnetic field, including clinical MRI. Results The pressure-flow performance curves, as well as the operating, opening, and closing pressures, were stable, fell within the specified limits, and changed according to the adjusted performance levels. The valve at settings 1–7 demonstrated low hydrodynamic resistance of 1.4 mm Hg/ml/min, increasing to 5.1 mm Hg/ml/min after connection of a distal drain provided by the manufacturer. At performance Level 8 the hydrodynamic resistance was greater than 20 mm Hg/ml/min. External programming of the valve proved to be easy and reliable. The valve is safe in 3-T MRI and the performance level of the valve is unlikely to be changed. However, with the valve implanted, distortion of the image is substantial. Integration of the valve with the SiphonGuard limits the drainage rate. Conclusions In the laboratory the Certas valve appears to be a reliable differential-pressure adjustable valve. Laboratory evaluation should be supplemented by results of a clinical audit in the future.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3