Author:
Bromby Adam,Czosnyka Zofia,Allin David,Richards Hugh K,Pickard John D,Czosnyka Marek
Abstract
Abstract
Background
It has been reported that pumping a shunt in situ may precipitate a proximal occlusion, and/or lead to ventricular over-drainage, particularly in the context of small ventricles. In the laboratory we measured the effect of pumping the pre-chamber of hydrocephalus shunts on intracranial hypotension.
Materials and methods
A simple physical model of the CSF space in a hydrocephalic patient was constructed with appropriate compliance, CSF production and circulation. This was used to test eleven different hydrocephalus shunts. The lowest pressure obtained, the number of pumps needed to reach this pressure, and the maximum pressure change with a single pump, were recorded.
Results
All models were able to produce negative pressures ranging from -11.5 mmHg (Orbis-Sigma valve) to -233.1 mmHg (Sinu-Shunt). The number of pumps required reaching these levels ranged from 21 (PS Medical LP Reservoir) to 315 (Codman Hakim-Programmable). The maximum pressure change per pump ranged from 0.39 mmHg (Orbis-Sigma valve) to 23.1 (PS Medical LP Reservoir).
Conclusion
Patients, carers and professionals should be warned that 'pumping' a shunt's pre-chamber may cause a large change in intracranial pressure and predispose the patient to ventricular catheter obstruction or other complications.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献