Development of a dural substitute from synthetic bioabsorbable polymers

Author:

Yamada Keisuke,Miyamoto Susumu,Nagata Izumi,Kikuchi Haruhiko,Ikada Yoshito,Iwata Hiroo,Yamamoto Kazuo

Abstract

✓ A new bioabsorbable composite sheet was developed to provide a substitute for the dura mater and was evaluated histologically and biomechanically using rats and rabbits. This composite, composed of two l-lactic acid-ϵ-caprolactone (50% l-lactic acid, 50% ϵ-caprolactone) copolymer films and a poly(glycolic acid) nonwoven fabric, displayed good mechanical properties and was completely absorbed 24 weeks after implantation in the back of rats. Histological evaluation of the composite sheet was undertaken by implanting it in 31 rabbits with dural defects and examining the sites of implantation 2 weeks to 26 months later. No infection, cerebrospinal fluid leakage, evidence of convulsive disorders, significant adhesion to underlying cortex, or calcification was noticed in any cases. In addition, the regenerated duralike tissue had a high pressure-resistant strength 2 weeks after implantation. The authors conclude that this new bioabsorbable composite sheet can be successfully used as a dural substitute.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3