The effect of posterior polyester tethers on the biomechanics of proximal junctional kyphosis: a finite element analysis

Author:

Bess Shay1,Harris Jeffrey E.2,Turner Alexander W. L.2,LaFage Virginie3,Smith Justin S.4,Shaffrey Christopher I.4,Schwab Frank J.3,Haid Regis W.5

Affiliation:

1. Department of Orthopaedic Surgery, New York University/Hospital for Joint Diseases;

2. NuVasive, Inc., San Diego, California;

3. Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York;

4. Department of Neurosurgery, University of Virginia Medical Center, Charlottesville, Virginia; and

5. Atlanta Brain and Spine Care, Atlanta, Georgia

Abstract

OBJECTIVE Proximal junctional kyphosis (PJK) remains problematic following multilevel instrumented spine surgery. Previous biomechanical studies indicate that providing less rigid fixation at the cranial aspect of a long posterior instrumented construct, via transition rods or hooks at the upper instrumented vertebra (UIV), may provide a gradual transition to normal motion and prevent PJK. The purpose of this study was to evaluate the ability of posterior anchored polyethylene tethers to distribute proximal motion segment stiffness in long instrumented spine constructs. METHODS A finite element model of a T7–L5 spine segment was created to evaluate range of motion (ROM), intradiscal pressure, pedicle screw loads, and forces in the posterior ligament complex within and adjacent to the proximal terminus of an instrumented spine construct. Six models were tested: 1) intact spine; 2) bilateral, segmental pedicle screws (PS) at all levels from T-11 through L-5; 3) bilateral pedicle screws from T-12 to L-5 and transverse process hooks (TPH) at T-11 (the UIV); 4) pedicle screws from T-11 to L5 and 1-level tethers from T-10 to T-11 (TE-UIV+1); 5) pedicle screws from T-11 to L-5 and 2-level tethers from T-9 to T-11 (TE-UIV+2); and 6) pedicle screws and 3-level tethers from T-8 to T-11 (TE-UIV+3). RESULTS Proximal-segment range of motion (ROM) for the PS construct increased from 16% at UIV−1 to 91% at UIV. Proximal-segment ROM for the TPH construct increased from 27% at UIV−1 to 92% at UIV. Posterior tether constructs distributed ROM at the UIV and cranial adjacent segments most effectively; ROM for TE-UIV+1 was 14% of the intact model at UIV−1, 76% at UIV, and 98% at UIV+1. ROM for TE-UIV+2 was 10% at UIV−1, 51% at UIV, 69% at UIV+1, and 97% at UIV+2. ROM for TE-UIV+3 was 7% at UIV−1, 33% at UIV, 45% at UIV+1, and 64% at UIV+2. Proximal segment intradiscal pressures, pedicle screw loads, and ligament forces in the posterior ligament complex were progressively reduced with increasing number of posterior tethers used. CONCLUSIONS Finite element analysis of long instrumented spine constructs demonstrated that posterior tethers created a more gradual transition in ROM and adjacent-segment stress from the instrumented to the noninstrumented spine compared with all PS and TPH constructs. Posterior tethers may limit the biomechanical risk factor for PJK; however, further clinical research is needed to evaluate clinical efficacy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference58 articles.

1. Validation of a clinical finite element model of the human lumbosacral spine;Guan;Med Biol Eng Comput,2006

2. Characterization and surgical outcomes of proximal junctional failure in surgically treated patients with adult spinal deformity;YagiM;Spine,1976

3. Trabecular bone modulus-density relationships depend on anatomic site;Morgan;J Biomech,2003

4. Long fusion from sacrum to thoracic spine for adult spinal deformity with sagittal imbalance: upper versus lower thoracic spine as site of upper instrumented vertebra;Fujimori;Neurosurg Focus,2014

5. Proximal junctional kyphosis in adult reconstructive spine surgery results from incomplete restoration of the lumbar lordosis relative to the magnitude of the thoracic kyphosis;Mendoza-Lattes;Iowa Orthop J,2011

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3