Finite element biomechanical analysis of 3D printed intervertebral fusion cage in osteoporotic population

Author:

Wu Jincheng,Miao Jun,Chen Guangdong,Xu Hanpeng,Wen Wangqiang,Xu Haoxiang,Liu Lizhu

Abstract

Abstract Objective To study the biomechanical characteristics of each tissue structure when using different 3D printing Cage in osteoporotic patients undergoing interbody fusion. Methods A finite element model of the lumbar spine was reconstructed and validated with regarding a range of motion and intervertebral disc pressure from previous in vitro studies. Cage and pedicle screws were implanted and part of the lamina, spinous process, and facet joints were removed in the L4/5 segment of the validated mode to simulate interbody fusion. A 280 N follower load and 7.5 N·m moment were applied to different postoperative models and intact osteoporotic model to simulate lumbar motion. The biomechanical characteristics of different models were evaluated by calculating and analyzing the range of motion of the fixed and cephalic adjacent segment, the stress of the screw-rod system, the stress at the interface between cage and L5 endplate, and intervertebral disc pressure of the adjacent segment. Results After rigid fixation, the range of motion of the fixed segment of model A-C decreased significantly, which was much smaller than that of the osteoporotic model. And with the increase of the axial area of the interbody fusion cages, the fixed segment of model A-C tended to be more stable. The range of motion and intradiscal pressure of the spinal models with different interbody fusion cages were higher than those of the complete osteoporosis model, but there was no significant difference between the postoperative models. On the other hand, the L5 upper endplate stress and screw-rod system stress of model A-C show a decreasing trend in different directions of motion. The stress of the endplate is the highest during flexion, which can reach 40.5 MPa (model A). The difference in endplate stress between models A-C was the largest during lateral bending. The endplate stress of models A and B was 150.5% and 140.9% of that of model C, respectively. The stress of the screw-rod system was the highest during lateral bending (model A, 102.0 MPa), which was 108.4%, 102.4%, 110.4%, 114.2% of model B and 158.5%, 110.1%, 115.8%, 125.4% of model C in flexion, extension, lateral bending, and rotation, respectively. Conclusions For people with osteoporosis, no matter what type of cage is used, good immediate stability can be achieved after surgery. Larger cage sizes provide better fixation without significantly increasing ROM and IDP in adjacent segments, which may contribute to the development of ASD. In addition, larger cage sizes can disperse endplate stress and reduce stress concentration, which is of positive significance in preventing cage subsidence after operation. The cage and screw rod system establish a stress conduction pathway on the spine, and a larger cage greatly enhances the stress-bearing capacity of the front column, which can better distribute the stress of the posterior spine structure and the stress borne by the posterior screw rod system, reduce the stress concentration phenomenon of the nail rod system, and avoid exceeding the yield strength of the material, resulting in the risk of future instrument failure.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Springer Science and Business Media LLC

Reference69 articles.

1. James SL, Geleijnse JM. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. The Lancet (British edition). 2018;392(10159):1789–858.

2. Kikuchi S. New concept for backache: biopsychosocial pain syndrome. Eur Spine J. 2008;17(S4):421–7.

3. Dorner TE, Crevenna R. Preventive aspects regarding back pain. Wien Med Wochenschr. 2016;166(1–2):15–21.

4. Meng B, et al. Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies. Eur Spine J. 2021;30(1):22–33.

5. Hartvigsen J, et al. What low back pain is and why we need to pay attention. Lancet. 2018;391(10137):2356–67.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3