Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients

Author:

Hopkins Benjamin S.1,Yamaguchi Jonathan T.1,Garcia Roxanna2,Kesavabhotla Kartik2,Weiss Hannah1,Hsu Wellington K.3,Smith Zachary A.2,Dahdaleh Nader S.2

Affiliation:

1. Northwestern University, Feinberg School of Medicine, Chicago, Illinois

2. Departments of Neurological Surgery and

3. Orthopedic Surgery,

Abstract

OBJECTIVEUnplanned preventable hospital readmissions within 30 days are a great burden to patients and the healthcare system. With an estimated $41.3 billion spent yearly, reducing such readmission rates is of the utmost importance. With the widespread adoption of big data and machine learning, clinicians can use these analytical tools to understand these complex relationships and find predictive factors that can be generalized to future patients. The object of this study was to assess the efficacy of a machine learning algorithm in the prediction of 30-day hospital readmission after posterior spinal fusion surgery.METHODSThe authors analyzed the distribution of National Surgical Quality Improvement Program (NSQIP) posterior lumbar fusions from 2011 to 2016 by using machine learning techniques to create a model predictive of hospital readmissions. A deep neural network was trained using 177 unique input variables. The model was trained and tested using cross-validation, in which the data were randomly partitioned into training (n = 17,448 [75%]) and testing (n = 5816 [25%]) data sets. In training, the 17,448 training cases were fed through a series of 7 layers, each with varying degrees of forward and backward communicating nodes (neurons).RESULTSMean and median positive predictive values were 78.5% and 78.0%, respectively. Mean and median negative predictive values were both 97%, respectively. Mean and median areas under the curve for the model were 0.812 and 0.810, respectively. The five most heavily weighted inputs were (in order of importance) return to the operating room, septic shock, superficial surgical site infection, sepsis, and being on a ventilator for > 48 hours.CONCLUSIONSMachine learning and artificial intelligence are powerful tools with the ability to improve understanding of predictive metrics in clinical spine surgery. The authors’ model was able to predict those patients who would not require readmission. Similarly, the majority of predicted readmissions (up to 60%) were predicted by the model while retaining a 0% false-positive rate. Such findings suggest a possible need for reevaluation of the current Hospital Readmissions Reduction Program penalties in spine surgery.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3