Artificial neural networks for the detection of odontoid fractures using the Konstanz Information Miner Analytics Platform

Author:

Liawrungrueang WongthawatORCID,Cho Sung TanORCID,Kotheeranurak VitORCID,Pun AlvinORCID,Jitpakdee KhanathipORCID,Sarasombath PeemORCID

Abstract

Study Design: An experimental study.Purpose: This study aimed to investigate the potential use of artificial neural networks (ANNs) in the detection of odontoid fractures using the Konstanz Information Miner (KNIME) Analytics Platform that provides a technique for computer-assisted diagnosis using radiographic X-ray imaging.Overview of Literature: In medical image processing, computer-assisted diagnosis with ANNs from radiographic X-ray imaging is becoming increasingly popular. Odontoid fractures are a common fracture of the axis and account for 10%–15% of all cervical fractures. However, a literature review of computer-assisted diagnosis with ANNs has not been made.Methods: This study analyzed 432 open-mouth (odontoid) radiographic views of cervical spine X-ray images obtained from dataset repositories, which were used in developing ANN models based on the convolutional neural network theory. All the images contained diagnostic information, including 216 radiographic images of individuals with normal odontoid processes and 216 images of patients with acute odontoid fractures. The model classified each image as either showing an odontoid fracture or not. Specifically, 70% of the images were training datasets used for model training, and 30% were used for testing. KNIME’s graphic user interface-based programming enabled class label annotation, data preprocessing, model training, and performance evaluation.Results: The graphic user interface program by KNIME was used to report all radiographic X-ray imaging features. The ANN model performed 50 epochs of training. The performance indices in detecting odontoid fractures included sensitivity, specificity, F-measure, and prediction error of 100%, 95.4%, 97.77%, and 2.3%, respectively. The model’s accuracy accounted for 97% of the area under the receiver operating characteristic curve for the diagnosis of odontoid fractures.Conclusions: The ANN models with the KNIME Analytics Platform were successfully used in the computer-assisted diagnosis of odontoid fractures using radiographic X-ray images. This approach can help radiologists in the screening, detection, and diagnosis of acute odontoid fractures.

Publisher

Asian Spine Journal (ASJ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3