Peripheral nerve regeneration through allografts compared with autografts in FK506-treated monkeys

Author:

Aubá Cristina1,Hontanilla Bernardo1,Arcocha Juan1,Gorría Óscar1

Affiliation:

1. Departments of Plastic and Reconstructive Surgery and Neurophysiology, Clínica Universitaria, Universidad de Navarra, Pamplona, Spain

Abstract

Object The clinical use of nerve allografts combined with immunosuppressant therapy has become a genuine possibility that could supersede the classic use of autografts. However, contradictory data have been reported on whether immunosuppressant therapy should be temporarily administered. The purpose of this study was to compare the nerve regeneration obtained using ulnar nerve allografts in nonhuman primates temporarily treated with FK506 (tacrolimus) with that obtained using nerve autografts. Methods Four-centimeter nerve autografts or allografts were placed in the distal ulnar motor nerve of eight monkeys. The FK506 was temporarily administered to the animals of the allograft group for 2 months. At periods of 3, 5, and 8 months postsurgery, quantitative electrophysiological recordings were obtained to estimate muscle response. A quantitative analysis of ulnar motor neurons in the spinal cord was performed and axons were counted stereologically. No statistically significant differences were found in the neuronal and axonal counts between autograft and allograft groups at 8 months. The electrophysiological studies showed no differences relative to the amplitude, but the autograft group presented with a greater nerve conduction velocity (NCV). However, no statistically significant differences were found between the number of neurons and distal axonal counts in the two groups. Conclusions Nerve regeneration through cold-preserved allografts in a primate model temporarily treated with FK506 was similar to that obtained using nerve autografts, in terms of neuronal and axonal counts. Nevertheless, temporary immunosuppression produced lower NCV when allografts were used, with less maturation of the myelinated fibers, which indicated that a partial rejection had taken place.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3