Multidrug resistance gene (MDR1) expression in human brain tumors

Author:

Nabors Michael W.,Griffin Constance A.,Zehnbauer Barbara A.,Hruban Ralph H.,Phillips Peter C.,Grossman Stuart A.,Brem Henry,Colvin O. Michael

Abstract

✓ Multidrug resistance for many types of cancer outside the central nervous system (CNS) has been found to be due to the overexpression of the multidrug resistance gene MDR1, of which the gene-product P-glycoprotein acts as a membrane-bound efflux pump for many anticancer drugs. To examine whether brain tumors overexpress the MDR1 gene, 25 brain-tumor specimens were subjected to Northern blot analysis: 10 gliomas, eight meningiomas, three schwannomas, one malignant lymphoma, and three tumors metastatic to the brain. Ten fresh-frozen autopsy specimens of various parts of normal brain were also analyzed. Blots were hybridized with 32P-labeled Chinese hamster complementary deoxyribonucleic acid (cDNA) and 32P-labeled human MDR1 cDNA. The MDR1 gene messenger ribonucleic acid (mRNA) was detected in two tumors using the Chinese hamster probe (one sphenoid wing meningioma and one metastatic prostate tumor) and in one CNS lymphoma using the human probe. Intact mRNA could not be extracted from the fresh-frozen autopsy specimens of normal brain. Seventeen tumors were examined for P-glycoprotein by immunohistochemical staining using murine monoclonal antibody C219: eight gliomas, eight meningiomas, and one craniopharyngioma. The neoplastic cells from two gliomas and three meningiomas and the blood vessels within six gliomas and two meningiomas stained positively for P-glycoprotein. Seven of 10 normal brain specimens stained positively for P-glycoprotein in blood vessels but no specimen demonstrated staining of parenchymal cells. This study demonstrates that the MDR1 gene can be detected in normal brain, and in malignant, benign, and metastatic lesions. P-glycoprotein can be present in tumor blood vessels even when it is not seen in neoplastic cells. Although the role of P-glycoprotein in tumor blood vessels needs to be further examined and more clearly defined, drug resistance in malignant primary brain tumors may result from characteristics not solely of neoplastic cells but also tumor vasculature.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3