Acute alterations in microvascular basal lamina after subarachnoid hemorrhage

Author:

Sehba Fatima A.,Mostafa Gulam,Knopman Jared,Friedrich Victor,Bederson Joshua B.

Abstract

Object. Aneurysmal subarachnoid hemorrhage (SAH) causes acute and delayed ischemic brain injuries. The mechanisms of acute ischemic injury following SAH are poorly understood, although an acute increase in microvascular permeability has been noted. The integrity of cerebral microvessels is maintained in part by components of basal lamina: collagen IV, elastin, lamina, and so forth. Destruction of basal lamina components by collagenases and matrix metalloproteinases (MMPs), especially MMP-9, has been known to occur in other ischemic models. The authors assessed the integrity of cerebral microvasculature after acute SAH by examining collagen IV and MMP-9 levels and collagenase activity in the microvessels. Methods. Subarachnoid hemorrhage was induced in rats through endovascular perforation of the intracranial bifurcation of the internal carotid artery. Animals were killed 10 minutes to 48 hours after SAH or sham operation (time-matched controls). Levels of collagen IV and MMP-9 were studied in the microvasculature by performing immunoperoxidase and immunofluorescence staining, and collagenase activity was assessed by in situ zymography. Little change occurred in collagen IV and MMP-9 immunostaining or collagenase activity at 10 minutes or 1 hour after SAH. Starting 3 hours after SAH, collagen IV immunostaining was reduced or eliminated along segments of microvessels whereas MMP-9 staining was segmentally increased. These effects reached a maximum at 6 hours and returned toward those values in sham-operated controls at 48 hours. Conclusions. Results of this study demonstrated an acute loss of collagen IV from the cerebral microvasculature after SAH and indicated that MMP-9 contributes to this event. The loss of collagen IV might contribute to the known failure of the blood—brain barrier after SAH.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3