Affiliation:
1. Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem; and
2. Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
Abstract
OBJECTIVEAugmenting brain perfusion or reducing intracranial pressure (ICP) dose is the end target of many therapies in the neuro-critical care unit. Many present therapies rely on aggressive systemic interventions that may lead to untoward effects. Previous studies have used a cardiac-gated intracranial balloon pump (ICBP) to model hydrocephalus or to flatten the ICP waveform. The authors sought to sought to optimize ICBP activation parameters to improve cerebral physiological parameters in a swine model of raised ICP.METHODSThe authors developed a cardiac-gated ICBP in which the volume, timing, and duty cycle (time relative to a single cardiac cycle) of balloon inflation could be altered. They studied the ICBP in a swine model of elevated ICP attained by continuous intracranial fluid infusion with continuous monitoring of systemic and cerebral physiological parameters, and defined two specific protocols of ICBP activation.RESULTSEleven swine were studied, 3 of which were studied to define the optimal timing, volume, and duty cycle of balloon inflation. Eight swine were studied with two defined protocols at baseline and with ICP gradually raised to a mean of 30.5 mm Hg. ICBP activation caused a consistent modification of the ICP waveform. Two ICBP activation protocols were used. Balloon activation protocol A led to a consistent elevation in cerebral blood flow (8%–25% above baseline, p < 0.00001). Protocol B resulted in a modest reduction of ICP over time (8%–11%, p < 0.0001) at all ICP levels. Neither protocol significantly affected systemic physiological parameters.CONCLUSIONSThe preliminary results indicate that optimized protocols of ICBP activation may have beneficial effects on cerebral physiological parameters, with minimal effect on systemic parameters. Further studies are warranted to explore whether ICBP protocols may be of clinical benefit in patients with brain injuries with increased ICP.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献