Cardiac-gated intracranial elastance in a swine model of raised intracranial pressure: a novel method to assess intracranial pressure–volume dynamics

Author:

Doron Omer12,Barnea Ofer2,Stocchetti Nino3,Or Tal2,Nossek Erez4,Rosenthal Guy1

Affiliation:

1. Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem;

2. Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel;

3. Department of Physiopathology and Transplantation, Milan University and Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; and

4. Department of Neurosurgery, New York University Medical Center, New York, New York

Abstract

OBJECTIVE Previous studies have demonstrated the importance of intracranial elastance; however, methodological difficulties have limited widespread clinical use. Measuring elastance may offer potential benefit in helping to identify patients at risk for untoward intracranial pressure (ICP) elevation from small rises in intracranial volume. The authors sought to develop an easily used method that accounts for the changing ICP that occurs over a cardiac cycle and to assess this method in a large-animal model over a broad range of ICPs. METHODS The authors used their previously described cardiac-gated intracranial balloon pump and swine model of cerebral edema. In the present experiment they measured elastance at 4 points along the cardiac cycle—early systole, peak systole, mid-diastole, and end diastole—by using rapid balloon inflation to 1 ml over an ICP range of 10–30 mm Hg. RESULTS The authors studied 7 swine with increasing cerebral edema. Intracranial elastance rose progressively with increasing ICP. Peak-systolic and end-diastolic elastance demonstrated the most consistent rise in elastance as ICP increased. Cardiac-gated elastance measurements had markedly lower variance within swine compared with non–cardiac-gated measures. The slope of the ICP–elastance curve differed between swine. At ICP between 20 and 25 mm Hg, elastance varied between 8.7 and 15.8 mm Hg/ml, indicating that ICP alone cannot accurately predict intracranial elastance. CONCLUSIONS Measuring intracranial elastance in a cardiac-gated manner is feasible and may offer an improved precision of measure. The authors’ preliminary data suggest that because elastance values may vary at similar ICP levels, ICP alone may not necessarily best reflect the state of intracranial volume reserve capacity. Paired ICP–elastance measurements may offer benefit as an adjunct “early warning monitor” alerting to the risk of untoward ICP elevation in brain-injured patients that is induced by small increases in intracranial volume.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3