Brain shift during bur hole–based procedures using interventional MRI

Author:

Ivan Michael E.1,Yarlagadda Jay2,Saxena Akriti P.3,Martin Alastair J.4,Starr Philip A.1,Sootsman W. Keith,Larson Paul S.1

Affiliation:

1. Departments of Neurological Surgery and

2. Jefferson Medical College, Philadelphia, Pennsylvania; and

3. Internal Medicine Department, Tufts Medical Center, Boston, Massachusetts

4. Radiology, University of California, San Francisco, California;

Abstract

Object Brain shift during minimally invasive, bur hole–based procedures such as deep brain stimulation (DBS) electrode implantation and stereotactic brain biopsy is not well characterized or understood. We examine shift in various regions of the brain during a novel paradigm of DBS electrode implantation using interventional imaging throughout the procedure with high-field interventional MRI. Methods Serial MR images were obtained and analyzed using a 1.5-T magnet prior to, during, and after the placement of DBS electrodes via frontal bur holes in 44 procedures. Three-dimensional coordinates in MR space of unique superficial and deep brain structures were recorded, and the magnitude, direction, and rate of shift were calculated. Measurements were recorded to the nearest 0.1 mm. Results Shift ranged from 0.0 to 10.1 mm throughout all structures in the brain. The greatest shift was seen in the frontal lobe, followed by the temporal and occipital lobes. Shift was also observed in deep structures such as the anterior and posterior commissures and basal ganglia; shift in the pallidum and subthalamic region ipsilateral to the bur hole averaged 0.6 mm, with 9% of patients having over 2 mm of shift in deep brain structures. Small amounts of shift were observed during all procedures; however, the initial degree of shift and its direction were unpredictable. Conclusions Brain shift is continual and unpredictable and can render traditional stereotactic targeting based on preoperative imaging inaccurate even in deep brain structures such as those used for DBS.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3