Deep Brain Stimulation Lead Localization Variability Comparing Intraoperative MRI Versus Postoperative Computed Tomography

Author:

Yearley Alexander G.12,Chua Melissa2,Horn Andreas3,Cosgrove G. Rees2,Rolston John D.2

Affiliation:

1. Harvard Medical School, Boston, Massachusetts, USA;

2. Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;

3. Department of Neurology, Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

Abstract

BACKGROUND AND OBJECTIVES: Commercially available lead localization software for deep brain stimulation (DBS) often relies on postoperative computed tomography (CT) scans to define electrode positions. When cases are performed with intraoperative MRI, another imaging set exists with which to perform these localizations. To compare DBS localization error between postoperative CT scans and intraoperative MRI. METHODS: A retrospective cohort of patients who underwent MRI-guided placement of DBS electrodes using the ClearPoint platform was identified. Using Brainlab Elements, postoperative CT scans were coregistered to intraoperative magnetic resonance images visualizing the ClearPoint guidance sheaths and ceramic stylets. DBS electrodes were identified in CT scans using Brainlab's lead localization tool. Trajectory and vector errors were quantified between scans for each lead in each patient. RESULTS: Eighty patients with a total of 157 implanted DBS electrodes were included. We observed mean trajectory and vector errors of 0.78 ± 0.44 mm (range 0.1-2.0 mm) and 1.57 ± 0.79 mm (range 0.2-4.2 mm), respectively, between postoperative CT and intraoperative MRI. There were 7 patients with CT scans collected at multiple time points. Trajectory error increased by 0.15 ± 0.42 mm (P = .31), and vector error increased by 0.22 ± 0.53 mm (P = .13) in the later scans. Across all scans, there was no significant association between trajectory (P = .053) or vector (P = .98) error and the date of CT acquisition. DBS electrodes targeting the subthalamic nucleus had significantly greater trajectory errors (P = .02) than those targeting the globus pallidus pars internus nucleus. CONCLUSION: Commercially available software produced largely concordant lead localizations when comparing intraoperative MRIs with postoperative CT scans, with trajectory errors on average <1 mm. CT scans tend to be more comparable with intraoperative MRI in the immediate postoperative period, with increased time intervals associated with a greater magnitude of error between modalities.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3