Integration of functional neuroimaging in CyberKnife radiosurgery: feasibility and dosimetric results

Author:

Conti Alfredo1,Pontoriero Antonio2,Ricciardi Giuseppe K.3,Granata Francesca4,Vinci Sergio4,Angileri Filippo F.1,Pergolizzi Stefano3,Alafaci Concetta1,Rizzo Vincenzo5,Quartarone Angelo5,Germanò Antonino1,Foroni Roberto Israel6,De Renzis Costantino2,Tomasello Francesco1

Affiliation:

1. 1Departments of Neurosurgery and

2. 2Radiation Oncology, CyberKnife Center, University of Messina;

3. 3Departments of Neuroradiology and

4. 4Departments of Neuroradiology and

5. 5Neurology, University of Messina; and

6. 6Stereotaxis, University of Verona, Italy

Abstract

Object The integration of state-of-the-art neuroimaging into treatment planning may increase the therapeutic potential of stereotactic radiosurgery. Functional neuroimaging, including functional MRI, navigated brain stimulation, and diffusion tensor imaging–based tractography, may guide the orientation of radiation beams to decrease the dose to critical cortical and subcortical areas. The authors describe their method of integrating functional neuroimaging technology into radiosurgical treatment planning using the CyberKnife radiosurgery system. Methods The records of all patients who had undergone radiosurgery for brain lesions at the CyberKnife Center of the University of Messina, Italy, between July 2010 and July 2012 were analyzed. Among patients with brain lesions in critical areas, treatment planning with the integration of functional neuroimaging was performed in 25 patients. Morphological and functional imaging data sets were coregistered using the Multiplan dedicated treatment planning system. Treatment planning was initially based on morphological data; radiation dose distribution was then corrected in relation to the functionally relevant cortical and subcortical areas. The change in radiation dose distribution was then calculated. Results The data sets could be easily and reliably integrated into the Cyberknife treatment planning. Using an inverse planning algorithm, the authors achieved an average 17% reduction in the radiation dose to functional areas. Further gain in terms of dose sparing compromised other important treatment parameters, including target coverage, conformality index, and number of monitor units. No neurological deficit due to radiation was recorded at the short-term follow-up. Conclusions Radiosurgery treatments rely on the quality of neuroimaging. The integration of functional data allows a reduction in radiation doses to functional organs at risk, including critical cortical areas, subcortical tracts, and vascular structures. The relative simplicity of integrating functional neuroimaging into radiosurgery warrants further research to implement, standardize, and identify the limits of this procedure.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3