Protecting venous structures during radiosurgery for parasagittal meningiomas

Author:

Conti Alfredo1,Pontoriero Antonio2,Salamone Ignazio3,Siragusa Carmelo4,Midili Federica4,La Torre Domenico1,Calisto Amedeo5,Granata Francesca6,Romanelli Pantaleo7,De Renzis Costantino2,Tomasello Francesco1

Affiliation:

1. 1Departments of Neurosurgery,

2. 2Radiation Oncology,

3. 3Radiology,

4. 4Medical Physics, and

5. 6Department of Neurosurgery, IRCCS Ospedale Pediatrico Bambino Gesù, Rome; and

6. 5Neuroradiology, University of Messina, Italy;

7. 7Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Rome, Italy

Abstract

Symptomatic edema is a potential complication of meningioma radiosurgery. Parasagittal meningiomas are at a particular risk for symptomatic edema, suggesting a role for a venous occlusive complication. The authors sought to develop a strategy to optimize CyberKnife stereotactic radiosurgical treatment parameters to reduce the irradiation of the peritumoral venous system. Multislice CT venography with 3D reconstructions was performed and coregistered with thin-section, contrast-enhanced, volumetric MR images. The tumor and critical volumes were contoured on the MR images. Venous anatomical details obtained from the CT venographic study were then exported onto the MR imaging and fused MR imaging-CT study. Target and critical structure volumes and dosimetric parameters obtained with this method were analyzed. The authors found that reducing the irradiation of veins that course along the surface of the meningioma, which may be at risk for radiation-induced occlusion, is feasible in parasagittal meningioma radiosurgery without compromising other treatment parameters including conformality, homogeneity, and target coverage. Long-term follow-up is needed to assess the clinical validity of this treatment strategy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3