Words matter: using natural language processing to predict neurosurgical residency match outcomes

Author:

Ortiz Alexander V.1,Feldman Michael J.2,Yengo-Kahn Aaron M.2,Roth Steven G.2,Dambrino Robert J.2,Chitale Rohan V.2,Chambless Lola B.2

Affiliation:

1. School of Medicine, Vanderbilt University; and

2. Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee

Abstract

OBJECTIVE Narrative letters of recommendation (NLORs) are considered by neurosurgical program directors to be among the most important parts of the residency application. However, the utility of these NLORs in predicting match outcomes compared to objective measures has not been determined. In this study, the authors compare the performance of machine learning models trained on applicant NLORs and demographic data to predict match outcomes and investigate whether narrative language is predictive of standardized letter of recommendation (SLOR) rankings. METHODS This study analyzed 1498 NLORs from 391 applications submitted to a single neurosurgery residency program over the 2020–2021 cycle. Applicant demographics and match outcomes were extracted from Electronic Residency Application Service applications and training program websites. Logistic regression models using least absolute shrinkage and selection operator were trained to predict match outcomes using applicant NLOR text and demographics. Another model was trained on NLOR text to predict SLOR rankings. Model performance was estimated using area under the curve (AUC). RESULTS Both the NLOR and demographics models were able to discriminate similarly between match outcomes (AUCs 0.75 and 0.80; p = 0.13). Words including “outstanding,” “seamlessly,” and “AOA” (Alpha Omega Alpha) were predictive of match success. This model was able to predict SLORs ranked in the top 5%. Words including “highest,” “outstanding,” and “best” were predictive of the top 5% SLORs. CONCLUSIONS NLORs and demographic data similarly discriminate whether applicants will or will not match into a neurosurgical residency program. However, NLORs potentially provide further insight regarding applicant fit. Because words used in NLORs are predictive of both match outcomes and SLOR rankings, continuing to include narrative evaluations may be invaluable to the match process.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference29 articles.

1. Selection of neurological surgery applicants and the value of standardized letters of evaluation: a survey of United States program directors;Field NC,2020

2. Programs selection criteria for neurological surgery applicants in the United States: a national survey for neurological surgery program directors;Al Khalili K,2014

3. COVID-19 Medical Student Guidance. Society of Neurological Surgeons

4. Standardized letter of recommendation for pediatric fellowship selection;Prager JD,2012

5. Standardized letter of recommendation for otolaryngology residency selection;Perkins JN,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3