Vestibulospinal monitoring in experimental spinal trauma

Author:

Young Wise,Tomasula John,DeCrescito Vincent,Flamm Eugene S.,Ransohoff Joseph

Abstract

✓ Vestibulospinal tract function was monitored in experimental contusion of the spinal cord in cats, and compared with somatosensory cortical evoked potentials. Both white and gray matter portions of the vestibular and somatosensory pathways were evaluated in cord injuries at T-7 and L-4. Severe contusions of 20 gm–20 cm force impact resulted in a rapid (less than 1 second) abolition of thoracic white matter conductivity, but a somewhat slower (4 to 5 minutes) loss of lumbar gray matter responses. A paradoxical transient recovery of white matter conductivity occurred 1 to 2 hours after injury, despite eventual progression to central hemorrhagic necrosis at the contusion site. In contrast, mild contusions (20 gm–10 cm force impact) produced only a temporary loss of neuronal activity: white matter for 1 to 2 hours, and gray matter for 30 to 40 minutes. In general, vestibular and somatosensory potentials showed similar sensitivity to contusion, although the former tended to recover earlier. We conclude that contusion injury causes two types of neuronal dysfunction in spinal cord: 1) a low-threshold concussion-related loss of activity lasting 30 to 120 minutes; and 2) a higher threshold necrotic process, requiring 1 to 2 hours to develop, which apparently spreads from gray to white matter.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3