Evoked potentials from direct cerebellar stimulation for monitoring of the rodent spinal cord

Author:

Hurlbert R. John,Tator Charles H.,Fehlings Michael G.,Niznik Greg,Linden R. Dean

Abstract

✓ Although the assessment of spinal cord function by electrophysiological techniques has become important in both clinical and research environments, current monitoring methods do not completely evaluate all tracts in the spinal cord. Somatosensory and motor evoked potentials primarily reflect dorsal column and pyramidal tract integrity, respectively, but do not directly assess the status of the ventral funiculus. The present study was undertaken to evaluate the use of evoked potentials, elicited by direct cerebellar stimulation, in monitoring the ventral component of the rodent spinal cord. Twenty-nine rats underwent epidural anodal stimulation directly over the cerebellar cortex, with recording of evoked responses from the lower thoracic spinal cord, both sciatic nerves, and/or both gastrocnemius muscles. Stimulation parameters were varied to establish normative characteristics. The pathways conducting these “posterior fossa evoked potentials” were determined after creation of various lesions of the cervical spinal cord. The evoked potential recorded from the thoracic spinal cord consisted of five positive (P1 to P5) and five negative (N1 to N5) peaks. The average conduction velocity (± standard deviation) of the earliest wave (P1) was 53 ± 4 m/sec, with a latency of 1.24 ± 0.10 msec. The other components followed within 4 msec from stimulus onset. Unilateral cerebellar stimulation resulted in bilateral sciatic nerve and gastrocnemius muscle responses; there were no significant differences (p > 0.05) in the thresholds, amplitudes, or latencies of these responses elicited by right- versus left-sided stimulation. Recordings performed following creation of selective lesions of the cervical cord indicated that the thoracic response was carried primarily in the ventral funiculus while the sciatic and gastrocnemius responses were mediated through the dorsal half of the spinal cord. It is concluded that the posterior fossa evoked potential has research value as a method of monitoring pathways within the ventral spinal cord of the rat, and should be useful in the study of spinal cord injury.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3