Frameless stereotactic placement of depth electrodes in epilepsy surgery

Author:

Mehta Ashesh D.,Labar Douglas,Dean Andrew,Harden Cynthia,Hosain Syed,Pak Jayoung,Marks David,Schwartz Theodore H.

Abstract

Object. Depth electrodes are useful in the identification of deep epileptogenic foci. Computerized tomography—magnetic resonance (CT/MR)— and angiography-guided frame-based techniques are safe and accurate but require four-point skull fixation that limits cranial access for the placement of additional grids and strips. The authors investigated the viability and accuracy of placing depth electrodes by using a commercially available frameless system. Methods. A slotted, custom-designed adapter was built to interface with the StealthStation Guide Frame-DT and 960-525 StealthFighter. The Cranial Navigation software was used to plan the trajectory and entry site based on preoperative spoiled gradient MR imaging studies. Forty-one depth electrodes were placed in 51 targets in 20 patients. Thirty-one of these electrodes were inserted through the temporal neocortex following craniotomy and placement of subdural grids, whereas 10 were placed through burr holes. All electrodes had contact either within (71%) or touching (29%) the target, 50 of which (98%) provided adequate recordings. Although the mean distance of the distal electrode contact from the intended target was 3.1 ± 0.5 mm, the mean distance to the edge of the anatomical structure was 0.4 ± 0.9 mm. Placement via the laterotemporal approach was significantly (p < 0.001) more accurate than that via the occipitotemporal approach. No complication occurred. Conclusions. Depth electrodes can be placed safely and accurately by using a commercially available frameless stereotactic navigation system and a custom-made adapter. Depth electrode placement to record ictal onsets during epilepsy surgery only requires the contacts to touch rather than to reside within the intended structure. The laterotemporal approach is a more accurate method of placing electrodes than is the occipitotemporal one, likely due to the increased distance from the entry point to the target.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epilepsy Surgery Evaluation;Epilepsy Surgery: A Practical Case-Based Approach;2024

2. Accuracy and Utility of Frameless Stereotactic Placement of Stereoelectroencephalography Electrodes;World Neurosurgery;2023-12

3. Two kinds of memory signals in neurons of the human hippocampus;Proceedings of the National Academy of Sciences;2022-05-05

4. Invasive Ableitung der Insel;Zeitschrift für Epileptologie;2022-02

5. Small Footprint Stereotactic Robotic Devices;Robotics in Neurosurgery;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3