Predicting leptomeningeal disease spread after resection of brain metastases using machine learning

Author:

Tewarie Ishaan Ashwini12,Senko Alexander W.1,Jessurun Charissa A. C.132,Zhang Abigail Tianai1,Hulsbergen Alexander F. C.132,Rendon Luis1,McNulty Jack1,Broekman Marike L. D.132,Peng Luke C.1,Smith Timothy R.1,Phillips John G.14

Affiliation:

1. Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;

2. Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and

3. Department of Neurosurgery, Haaglanden Medical Center, The Hague;

4. Department of Radiation Oncology, Tennessee Oncology, Nashville, Tennessee

Abstract

OBJECTIVE The incidence of leptomeningeal disease (LMD) has increased as treatments for brain metastases (BMs) have improved and patients with metastatic disease are living longer. Sample sizes of individual studies investigating LMD after surgery for BMs and its risk factors have been limited, ranging from 200 to 400 patients at risk for LMD, which only allows the use of conventional biostatistics. Here, the authors used machine learning techniques to enhance LMD prediction in a cohort of surgically treated BMs. METHODS A conditional survival forest, a Cox proportional hazards model, an extreme gradient boosting (XGBoost) classifier, an extra trees classifier, and logistic regression were trained. A synthetic minority oversampling technique (SMOTE) was used to train the models and handle the inherent class imbalance. Patients were divided into an 80:20 training and test set. Fivefold cross-validation was used on the training set for hyperparameter optimization. Patients eligible for study inclusion were adults who had consecutively undergone neurosurgical BM treatment, had been admitted to Brigham and Women’s Hospital from January 2007 through December 2019, and had a minimum of 1 month of follow-up after neurosurgical treatment. RESULTS A total of 1054 surgically treated BM patients were included in this analysis. LMD occurred in 168 patients (15.9%) at a median of 7.05 months after BM diagnosis. The discrimination of LMD occurrence was optimal using an XGboost algorithm (area under the curve = 0.83), and the time to LMD was prognosticated evenly by the random forest algorithm and the Cox proportional hazards model (C-index = 0.76). The most important feature for both LMD classification and regression was the BM proximity to the CSF space, followed by a cerebellar BM location. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest risk factors for both LMD occurrence and time to LMD. CONCLUSIONS The outcomes of LMD patients in the BM population are predictable using SMOTE and machine learning. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest LMD risk factors.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3