Developing consistently reproducible intervertebral disc degeneration at rat caudal spine by using needle puncture

Author:

Zhang Huina12,La Marca Frank1,Hollister Scott J.12,Goldstein Steven A.23,Lin Chia-Ying12

Affiliation:

1. Spine Research Laboratory, Department of Neurosurgery, University of Michigan Medical School;

2. Department of Biomedical Engineering, University of Michigan; and

3. Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan

Abstract

Object The goal in this study was to develop a convenient, less-invasive animal model to monitor progression of intervertebral disc (IVD) degeneration for future testing of new treatments for disc degeneration. Methods Level 5/6 and 7/8 IVDs of rat caudal spine were stabbed laterally with 18- or 21-gauge hypodermic needles to a depth of 5 mm from the subcutaneous surface with the aid of fluoroscopy. In vivo MR imaging studies were performed at 4, 8, and 12 weeks postsurgery to monitor progression of IVD degeneration. Histological analysis including H & E and safranin O staining, and immunohistochemical studies of collagen type II and bone morphogenetic protein receptor type II (BMPRII) were assessed at 12 weeks postsurgery. Results The 18- and 21-gauge needle–stabbed discs illustrated decreases in both the T2 density and MR imaging index starting at 4 weeks, with no evidence of spontaneous recovery by 12 weeks. Histological staining demonstrated a decreased nucleus pulposus (NP) area, and the NP–anulus fibrosus border became unclear during the progression of disc degeneration. Similar patterns of degenerative signs were also shown in both safranin O– and collagen type II–stained sections. The BMPRII immunohistochemical analysis of stabbed discs demonstrated an increase in BMPRII expression in the remaining NP cells and became stronger in anulus fibrosus with the severity of disc degeneration. Conclusions After introducing an 18- or 21-gauge needle into the NP area of discs in the rat tail, the stabbed disc showed signs of degeneration in terms of MR imaging and histological outcome measurements. Changes in BMPRII expression in this animal model provide an insight for the effectiveness of delivering BMPs into the region responsible for chondrogenesis for disc repair. This convenient, less-invasive, reproducible, and cost-effective model may be a useful choice for testing novel treatments for disc degeneration.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3