Predicting Smart City Traffic Models using Adaboost Regression Method

Author:

Bezek Güre Özlem1ORCID

Affiliation:

1. BATMAN ÜNİVERSİTESİ

Abstract

In parallel with the population density in cities, noise, traffic congestion, parking problems and environmental pollution also increase. To address these problems, smart transportation and traffic systems have emerged, which benefit from internet technologies to offer solutions that concern nearly everyone. These systems generate a vast amount of data, often analyzed through machine learning methods. This study has utilized the Adaboost Regression method from the ensemble methods family within the machine learning framework to predict a smart city's traffic model. This method is a combination of many weak learners randomly selected from the data set and created by applying machine learning algorithms to form a strong learner. The Adaboost Regression method has been applied on a smart city traffic models data set found in the Kaggle database. This data set consists of a total of 48,120 rows and 4 columns, including variables such as the number of vehicles, number of intersections, date and time, and ID number. New variables have been created from the date and time variable before starting to analyze the data. The analyses performed with the Adaboost Regression method were carried out in Orange, a free Python-based program. Performance indicators such as Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2) have been used in the study. A 10-fold cross-validation method was used to ensure the validity of the model and to avoid overfitting. The analysis resulted in an MSE value of 24.19; RMSE value, 4.91; MAE value, 3.00; and R2, 0.94. In conclusion, it has been observed that the AdaBoost Regression method performs successful predictions with low error rates. The Adaboost Regression method, which estimates with minimum error, is also recommended for applications in areas such as smart grid, smart hospital, and smart home, in addition to smart traffic prediction.

Publisher

INESEG Yayincilik

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3