Investigation of Mechanical Properties of Composite Al6061/Ni-Al2O3 Produced by Stir Casting Process

Author:

ADIYAMAN Oktay1

Affiliation:

1. FACULTY OF TECHNOLOGY

Abstract

Composites are widely used material types today, and it is known that matrices and additives in composites improve the mechanical properties of the material. In this study, Al6061 matrix and Ni-Al2O3 reinforced composite material was produced by stir casting method and the effect of Ni- Al2O3 mixture reinforcement on the hardness and tensile properties of the produced composite material was investigated. The determination of the mechanical properties of the samples obtained after the casting process was determined by the results of microhardness analysis and tensile test, and the internal structure of the material was examined by XRD analysis. According to the results of XRD analysis, it was determined that Ni and Al2O3 phases were formed together with the matrix element Al. The results of the tensile analyzes showed that the amount of strain in the composite material changed depending on the ratio of the reinforcement element, and the highest strain value occurred in the Ni-Al2O3 reinforced sample with Al matrix. However, it was observed that the brittle fracture mechanism was effective in all samples. While the highest microhardness value was obtained in sample 4 (Al6061+ (mass. %15) Ni+ Al2O3) with 89.6 HV0.5 value, the lowest microhardness value was obtained from pure Al sample with 66.7 HV0.5 value. As a result, it was determined that the Ni-Al2O3 reinforcement element increased the microhardness value in the Al matrix composite material.

Publisher

INESEG Yayincilik

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3