MODEL OF COMBINED IPT AND NNLVQ FOR CLASSIFICATION OF HEALTHY AND SICK BROILERS IN TERMS OF AVIAN INFLUENZA
Publisher
INESEG Yayincilik
Reference12 articles.
1. Fanatico, A. C., Pillai, P. B., Emmert, J. L., & Owens, C. M. (2007). Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry science, 86(10), 2245-2255. 2. Zhuang, X., Bi, M., Guo, J., Wu, S., & Zhang, T. (2018). Development of an early warning algorithm to detect sick broilers. Computers and Electronics in Agriculture, 144, 102-113. 3. Mollah, M. B. R., Hasan, M. A., Salam, M. A., & Ali, M. A. (2010). Digital image analysis to estimate the live weight of broiler. Computers and Electronics in Agriculture, 72(1), 48-52. 4. Matin, H. R. H., Saki, A. A., Varkeshi, M. B., & Abyaneh, H. Z. (2013). Comparison and validation of artificial intelligent techniques to estimate intestinal broiler microflora. Neural Computing and Applications, 23(1), 61-66. 5. Aydin, A. (2017). Development of an early detection system for lameness of broilers using computer vision. Computers and Electronics in Agriculture, 136, 140-146.
|
|